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1. Introduction

During the last decade, when least-squares collocation
presented itself as the dzla processing model in physical geodesy,
the most serious argument against was the inversion of a large
matrix res"lting in much computer time needed for this purpose.

No attention was paid to the time used for calculating the linear
functionals on the covariance function because for simple problems
this time is definitely inferior to the inversion time. The
situation, however, changed immediately when problems were
attacked which involved many and/or difficult covariance calcu-
lations. Although R.H. Rapp and C.C. Tscherning succeeded in
deriving closed expressions of covariance functions for different
models of anomaly degree variances (Rapp and Tscherning, 1974),
the closed expressions still consist of functions like logarithmic
and trigonometric functions, which are expensive in terms of computer
time. There is obviously no way out of this dilemma.

We mention only a few kinds of application: prediction
of mean gravity anomalies over rectangular blocks from point
values, prediction of mean gravity anomalies over larger areas
from mean gravity anomalies over smaller areas, prediction of
mean gravity anomalies from satellite altimetry data, all
problems involving satellite dynamics. A1l these applications
have one common feature: it is necessary to calculate covariances
by numerical integration. In case of mean gravity anomaly pre-
diction the integration is at most twofold, in case of satellite
dynamics, however, it is multifold. In the former case an explicit
integration procedure can be avoided, if one replaces the rec-
tangular area of integration by a circular one. The so-called
smoothing operation is caused by an isotropic smoothing operator
acting on the covariance function which itself is also isotropic.
Therefore, the convolution of the smoothing operator with the
covariance function corresponds to a product of the corresponding
eigenvalues, which is naturally very simple. In order to obtain
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closed expressions for the mean gravity anomaly function, however,
a further artificial assumption has to be made: the eigenvalues

of the smoothing operator have to be replaced by some other

values (K.P. Schwarz, 1976). In problems involving satellite
dynamics as satellite-to-satellite ranging probably the only way
to calculate covariances is by numerical integration over some
time interval. Using exact covariances for the integration proce-
dure is extremely time consuming (J. Kryhski, 1978).

These were the reasons why the question arose whether
it is possible to use some more or less accurate approximations
of the exact covariance functions; the approximating functions
should be simple, easy to handle, accurate and should consume
as little mass storage as possible. A first attempt was reported
to the author by G. Lachapelle (personal communication) who re-
placed the different covariance functions by step functions,
the simplest approximating finite elements. However, one has
to be very careful when using such approximations because of
the possible lost of positive definiteness of the covariance
matrix.

A better approximation can probably be achieved by
piecewise linear elements and, even more, by cubic spline func-
tions. From our point of view, the spectrum of the approximating
function relative to the exact one gives a very good idea of
its usefulness. Chapter 3-5, therefore, deals with the spectral
properties of the functions considered here. ‘

Due to the approximation of the basic covariance func-
tion the covariance matrix differs slightly from the exact one.
This fact, again, will falsify to some extent the predicted
signal as well as its error. It is not a simple task to esti-
mate the consequences of inaccurate covariances. An attempt in
this direction is performed in chapter 8.




In chapter 9 we shall present a spatial approxi-
mation model which is based on a bicubic spline function. Com-
parisons of computer time used for the exact and approximating
covariance function finish our investigations.

2. Basic properties of covariance functions

Since collocation is already very well known to geo-
desists, we will, only for the sake of completeness, summarize
the essential properties of covariance functions. When we speak
about covariance functions here we always have the covariance
function of the disturbing potential in mind.

The general form of an homogeneous isotropic spatial
covariance function is given by

> Rk2) n+1
K(P,Q) = ) k_( ) P _(cosy) , (£-<1)

= 1 R S n

n=0 P Q
where [ B R points in space,

o rQ ... modulus of the radius vectors of P and Q
R radius of the Bjerhammar sphere,
b ... spherical distance between P and Q ,
Pn(cosw).. Legendre polynomial of degree n ,
k positive coefficients.

Because of the product rPrQ » K(P,Q) is symmetric with respect
to P and Q

K(p,Q) = K(Q,P) ’

and moreover, the solid spherical harmonics guarantee harmonicity

with respect to both points outside the sphere r = Rb




5pK(P,Q) = 8 K(P,Q) = 0

One important fact, to which no attention is paid
sometimes, is the dependence on essentially two variables only:
the spherical distance ¢ and the product rPrQ . This property
will be used extensively in chapter 9 when we approximate the
spatial covariance function by a bicubic spline function depen-
dent on these two variables.

According to the Funck-Hecke formula (Meissl, 1971,
p.38) the spherical harmonics are the eigenfunctions of an inte-

gral transformation with a distance dependent kernel J(P.Q)
with eigenvalues A

an(Q)} an<P)
jJ(P-Q){S (Q) do(Q) = Al 5. P (2-2a)
g nm J nm
1
A= 2m fJ(t)Pn(t)dt s LtE COSH .. (2-2b)

Taking P and Q as points on the unit sphere, the eigenvalues
of the covariance function (2-1) are given by

o0 i |

A\ =21 ¥ k. P.(t)P (t)dt , (2-3)
n j=0 > Jlf n

whichk, due to the mutual orthogonality of Pn s reduces to

< 4“ [
n = Znel Ka o ==3

When all coefficients kn , as assumed at the beginning, are

positive, then also all eigenvalues Ao will be positive. A

positive spectrum (which is discrete in the spherical case and

-y




consists of the eigenvalues X ), again, is a necessary and
n

sufficient condition for the positive defineteness of the co-

variance function.

Similar reiations as in the spherical case hold also
for its planar analogue: A homogeneous, isotropic covariance
function wiich is symmetric with respeet to P and ' @ and

harmonic in the upper half space 2z > 0 is given by

K(P,Q) = [J_(ns)G(n)e "' #P*2 ndn , (2-4)
o)
with Jo(x) .+« Bessel function of first kind and zero order,
zp,zQ heights of P and Q above the plane
Z =0
S ... planar distance between P and Q ,

n ... frequency

and the continuous spectrum
G(n) = [J_ (ns)K(s)sds (2-5)

for By ™ zQ =0 . G(n) 1in equation (2-5) is the Hankel trans-

form of K(s) . K(s) 1dn (2=4) is its tnverse transtorm (apart

from the spatial dependence expressed by z, and zQ). As in
the spherical case, the positivity of the spectrum G(n) is
a necessary and sufficient condition for the positive de-
finiteness of the corresponding covariance function.

It should be mentioned that all relations written down
in this chapter are not new at all, but only an outline of
(Moritz, 1976). However, for reasons of continuity, it seemed
to be worth to write down them here again.




3. Approximation of the distance dependent

covariance function by step functions

All finite elements share two essential properties:
they have a compact support and are there quadratically inte-
grable. The simplest finite element is the step function which
is constant over some domain and vanishes outside. A function
consisting of step functions is therefore, apart from the
trivial case, discontinuous and as such an element out of
C~1[DJ , the space of all discontinuous functions defined on the
domain D . However, if the function is guadratically inte-
grable, the space C_l[D] can be enlarged to KO[D] s the
space of all quadratically integrable functions which must not

necessarily be continuous.

3.1 Step function approximation

Here we deal with an approximation of the covariance
function by a step function which is naturally an element of
KU[-I,IJ , the domain of definition being the closed interval
[-1,1] corresponding to the range of the cosine function.
(We could also have chosen the domain [O,r ) ; however, for
further applications the dependence on the variable t = cosy
is more advantageous.

In order to make such an approximation we have first
to arrange some gridding of the interval. It is evident that
there exists an infinite number of such interval subdivisions.
We select the most natural one with constant grid spacing equal
to h . Let J be the number of subintervals within the total
interval [ -1,1] , then the grid points are given by

£, = = L & (J=1)I0 4 F =il ginas W% i
J (3-1a)
with h = 2/4




Now, the step function approximation is performed in
such a way that the step height at the grid point tj (which
is the midpoint of the step) is equal to the value of the
covariance functior at this point. Therefore, the set of
function values, corresponding to the grid defined in (3-1),
1s given Ly

Fr =Ry g s R A (3-1b)

Figure 3.1 illustrates the approximation.

N

L S | Step function approximation

As stated above, the step function is discontinuous and
therefore not differentiable. Consequently, such an approxi-
mation can only be used for one single kind of covariances.

For example, separate approximating step functions have to be




used for the auto-covariance of the disturbing potential

cov(TP.T ) and for the cross-covariance between the disturbing

Q
potential and the deviation of the vertical cov(TP,g

Q) v nns
is certainly an essential disadvantage. An advantage, however,
is the very simplicity of its expression.

3.2 Maximum approximation error

The estimate of the signal and its error depends on the
different auto- and cross-covariances involved. In order to
estimate the influence of incorrect values of these quantities,
it is necessary to have some information about the approximation
error. In the case of step function approximation it is fairly
easy to give an upper bound of this error.

Take the maximum absolut derivative of the covariance
function to be m?x [K'(t)| , then an upper error bound is

linearly dependent on the grid spacing h(if h > 0) and given
by

XK' {t)] . (3-2)

We will call this upper bound the error norm and denote it by
1

3.3 Spectrum of the step function approximation

As we have already stated in the introduction, the
deviation of the approximation function from the exact one gives
a good idea about the intrinsic properties of the approximation
and therefore about its usefulness.

Taking equations (2-2b) and (3-1) into account, the
eigenvalues of the step function approximation can be calculated
from

~

-,



t .
L e L
A P T (3-3)
H =1 7 t

n

The integrals occurring here can be expressed in a closed form
(Meissl, 171, p.46):

i+l
o
i A 2n+l[Pn+1(xj+1) g (Y LR B e L

= n+1( j)]’
x;+1
together with ﬁ Po(t)dt = xj+l - xj
; (3-4)
xj+1
g e
and i Pl(t)dt = §(xj+1 xj)

A very simple example will demonstrate the principle:
we choose J =1, so that the approximating step function
will have the form

E{=1) Tor = 1

| A
o+
A
o

According to (3-3) the eigenvalues of this simple model are
given by

A= 2 [f(-1) ?Pn(t)dt N f(l)}Pn(t)dt]
-1 (0]
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With (3-4) we obtain

A = 2n{f(—1)=2%;-1- [P ,,(0) - P _ (0) +P

’ f(l)?%?T AL Rl SO L BB R L B L

Let us now distinguish between even and odd values for n . For
n even, the following relations hold:

n even: P (0) = Pn_l(O) =0

n+1
n+1(‘ ) - n—l(—l) el
n+1(1) i n-l(l) va

Therefore, all eigenvalues e with n > 0 and even vanish.
This fact would, until now, at most allow positive semi-defi-
niteness of the step function, presumed all odd eigenvalues are
non-negative. Now we have still to investigate the eigenvalues
of odd degree. For n odd we find:

n odd: Pn+1(0) s - n+l Pn_l(O) # 0
per(-1) = P (-1) = 1
n+1(1) % Pn—l(l) =1

Consequently, we obtain for the eigenvalues of odd degree

r, = S (F(1) - f(-1)]P,_ (0)

—————————



The expression in brackets is positive because of the fact, that
the covariance is always smaller than the variance, K(y) <K(0) ,
Yy # 0 . Therefore, the sign of A, depends on the sign of
Pn_l(O) . It is no*t difficult to give a formula for Pn_l(O)

P (0) = (-1) 2 {n-1)1 ,
1 n-1 2 n-1
[(=5)1] 2

so that the A finally are given by

n-1
2 (n-1
1

=3 150 £ dd
(n+1) [(Z5) 1] %2 e

i _{Zn[K<0)—K<n>](-1)

0 for n even

It is obvious that the series of odd degree A has alternating
sign. Therefore, this simple approximation function is not even
positive semi-definite. Figure 3.2 demonstrates the behaviour

of the eigenvalues for 2n[K(0)-K(n)] = 1 . (The eigenvalue

A, = 2n[K(0)+K(m)] .)

)‘n

0.5+ @

[ ] 10

Fig. 3.¢ Eigenvalues of a 2-step function
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This example should only explain the principle; the
bigger J (smaller h ), the higher the n, of the first non-
positive eigenvalue will be and the less will the eigenvaluves of
the approximating function differ from the exact ones for n - n,
Some realistic examples are given in chapter 6.

The step function approximation of the covariance
function, however, will never be positive definite for h > 0
Therefore, one has to be extremely careful when using such
approximations.

4. Approximation of the distance dependent covariance

function by piecewise linear functions

A better approximation of the covariance function can
be achieved by using a piecewise linear function. Such a func-
tion does not have discontinuities as the step function, but
is continuous over the whole domain D of definition. It is,
however, not continuously differentiable, and consequently an
element of Co[D] , the space of continuous functions defined
on D . Taking into consideration, however, the fact that the
first derivatives are quadratically integrable, we can enlarge
the space to Kl[D] which consists of functions with quadrati-
cally integrable first derivatives.

4.1 Piecewise linear approximation

For the sake of simplicity and for comparison purposes
we take the same gridding as in the case of step functions.
The grid points are, therefore, given by (3-1la) and the corre-
sponding function values by (3-15). Figure 4-1 may illustrate
the approximation.




R

-

Fig. 4.1 Piecewise linear approximation

As stated above, the piecewiselinear function is con-
tinuous. Its derivative is a step function. Consequently, such
an approximation can not only be used for one kind of covariances
only, but also for such ones which involve at most one deri-
vative with respect to t . For example, approximating the
basic auto-covariance function of the disturbing potential
cov(TP,TQ) by the piecewise 1inear function, the cross-covariance
between the disturbing potential and the deviation of the
vertical cov(TP,gQ) can also be derived by differentiation
and is therefore a step function. Therefore, the area of appli-
cation is already enlarged relative to the step function
approach.
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4.2 Maximum approximation error

Not as simple as in the case of step function approxi-
mation is the estimate of the maximum absolute difference
between the piecewise linear approximation and the exact function.
It is evident that the error will be zero when the original
function is linear. Therefore, the curvature of the function
will primarily cause the error.

Let us concentrate on one subinterval, where we re- i
place the covariance functionbya circle having a curvature
equal to that of the covariance ftunction there (Figure 4.2). 1

F1g, &2 Approximation element

The radius of curvature o . of K(t) 1is given by the well known
formula

€406 ) b g
[K"(t)]

With (4-1) it is easy to calculate d

h? .
g = 5= p2 -r(l+K 2)
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and with 4 = dVG;K‘J we obtain the error

, 4-2
2(1+K"'“) ( ;

iRy N G YR
R 5, el \3__V¢ A {hK } )

Consequently, an upper bound of the error can be estimated by

! . 14K ity
max| K(t) f( <m V[ - }
£ 4 [ 14K ' (t )2)} ;

[f the product hK" is small, we can evaluate the square root

into a Taylor series and neglect higher terms obtaining

R

Therefore, the error norm for sufficiently small hK"(t) s

"' -} 2ynd 4
e R ot
2(14K" ") (1+K' %)

given by the simple expression
h“ el ad
max|K(t) - f(t)| < g— max[K {231 . (4-3)
t

The same result, derived differently, can be found in (Strang &
Fix, 1973. p.44),

Let us now estimate the error of the first derivative.
Since f(t) interpolates K(t) , the difference K(t) - f(t)
is zero at each grid point. Therefore, within each subinterval
there must be at least one point t' where K'(t') - f'(t') = 0.
Considering that f(t) is linear, K"(t) - f"(t) = K"(t) with-
in each subinterval and we obtain the estimate

max|K'(t) = f'(t)| < h max|K"(t)| . (4-4)
t t
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A more careful proof of (4-4) would improve the dependence on
h to WLZ2.

4.3 Spectrum of the piecewise linear approximation

The piecewise linear function on the subinterval
Ltj’tj+1] is given by

: 1 . ;
f(J\(t) = 2 a(J)(t_tl))L

2 ]
G €31
a_ +a, CE=8.)
with coefficients a;j) = K(tj)
5 1 | )
and a, = F[K(tj+1) K(tj)]

On introducing these relations into (2-2b) we obtain

J j+1 1 ) 2
x =25 Y T [ § al?it-2.)"1P (x)at
n ¢
J=3 L. L=0 :
. (4-6)
tj+1 t'+1
j) (3) (3)
= 2n') [(aéj - alJ tj) Jo P_{t)dt + alj } P_(t)tdt].
J= tj tj

The expression for the first integral has already been derived
and is given by equation (3-4). In order to evaluate the second
integral we obey from (Hobson, 1965,p.38) the general relation

1

JPL (0P (6)dt = frmrtrmmyy (WP (E)P, () = P (t)P, , (t,)

" -t (n-m)P_(t )P _(t )] (4-7)

-
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which is valid for n # m . Taking into account the fact that
t = Pl(t) , the second integral can be expressed by

tj+l 1 1
/ P (t)tdt = an(t)tdt - f P (t)tdt
g | 4 f o
J ] J+1
ERECI i) - ( T Ea
. n2+n_2{['ntjpn_l(tj) PoEE ] < £ 0n l)Pn(tj)]

_[ntj+lpn—1(tj+]) & Pn(tj+l) (4-8a)

- g, (n-1)P (tj+1)]},

n

whiich halds for n # 1 ¢ for n = 0  we have

t
o W 5
t[ P (t)tdt = »( o £.)
j
and for n =1
& +1
Eak 3 3
} P (t)tdt §(tj+1 - tj) . (4-8b)

The following example may demonstrate the principle.
For comparison purposes we choose the same subdivision as for
the step function case, J = 1 , so that the approximating linear
function has the following form:

with a_ = K(r) and a = 5[K(0) - K(m)]
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According to (4-6) and (4-8) the eigenvalues of this
simple model are given by

1
(t)dt + al_jl'Pn(t)tdt],

which, because of the mutual orthogonality of Legendre polyno-
mials, gives the simple solution

A= n(K(0) + K(m)]

xy = SL[K(0) - K(n)]
A =0 for n > 2

This result seems to be astonishing at first sight.
However, when we concentrate a little bit more on it we find it
obvious: The linear function f(t) defined on the closed inter-
val is linear in t which means that in reality f(t) is a
linear combination of Po(cosw) and Pl(cosw) , the Legendre
polynomials of zero and first degree. Therefore, there can
only exist non-vanishing eigenvalues of degree zero and one in
agreement with our result. The approximated covariance function,
however, is only positive semi-definite. But this is an excep-
tional case; for J > 1 the function is not even positive semi-

definite as will be shcown numerically in chapter 6.

5. Approximation of the distance dependent

covariance function by cubic spline functions

Spline functions are very useful tools for purposes
of interpolation and approximation. They are widely applied in
all areas where numerical mathematics enters somehow. The theo-

‘
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=

retical background of spline functions is remarkably deep and
extremely interesting especially because of its minimum norm
and best approximation properties making interpolating spline
functions unique anong all other interpolating functions. We do
not present details here; the interested reader may consult
(Ahlberg et.al., 1967), the standard literature about spline
functions. Some applications can be found in (Siinkel, 1977).

For the sake of completeness we give a short definition
of a cubic spline: A function, twice continuously differentiable
on the whole domain, connecting subsequent data points by cubic ‘
polynomials and fulfilling two special boundary conditions, is
called an interpolating cubic spline. The coefficients of the

cubic polynomials are uniquely determined by continuity conditions
up to and including the second order derivative. Consequently,

the cubic spline is an element of C2 (D] . For analogous reasons
as in chapters 3 and 4 it can even be considered as an element

of K3 [D] , the space of all continuous and twice continuously
differentiable functions defined on D with quadratically inte-
grable second order derivatives. Within each subinterval its
equation is given by

. 3
=0
with ald) - £
1 .
a(J) - (f _f- )/(X i ) - l(x - )(fll +2f”)
2 gl o s '\ 3+1 T3 341 3
(3) , 1 e» (5-1)
ay’ = > fj
03y . Ligw . om 3
The second derivatives {fg} at the grid points j=1,... ,J+1 are

derived from continuity conditions of first order derivatives.
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5.1 Cubic spline approximation

Again we adopt the same gridding as in the step and
linear case. The grid points are, therefore, given by (3-1a)
and the corresponding function values by (3-1b). In order to
give an idea about the performance of spline function approxi-
mation we have divided the whole interval [-1,17] into 12
subintervals only and have fitted the cubic spline to the co-
variances at these grid points. Figure 5.1 shows both curves,
the exact covariance function and its spline approximation.
The naked eye is not able to find a difference between both

curves,

Etgl. Syl Cubic spline approximation

As stated above, the cubic spline is twice continuously
differentiable. Its first derivative is, therefore, a poly-
nomial of second degree which is once continuously differentiable;
its second derivative is a piecewise linear function being not
continuously differentiable; finally, its third order derivative
is a step function being discontinuous. Consequently, such a
spline approximation can not only be used for one kind of co-
variances as this is the case for the step function approximation
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or for covariances involving one derivative with respect to t ,
but for all covariances resulting from at most three differen-
tiations with respect to the argument t . For example, approxi-
mating the basic auto-covariance function of the disturbing
potential cov(T_ ,T ) by a cubic spline, the cross-covariances

P’ 0
between

A B R o 2
90 009 A 3 A 30

and also the auto-covariances (up,m ¥ s

with ¢ denoting the deviation of the vertical ¢ and n ,
respectively, can be derived. The area of application is, there-
fore, much larger than in the case of piecewise linear approxi-
mation.

5.2 Maximum approximation error

It is not a simple task to estimate the maximum approxi-
mation error for cubic spline functions. The estimation is
strongly dependent on the continuity class of the function space
of which the original function is an element. Here we have to
approximate the covariance function which is irfinitely often
continuously differentiable. However, we shall relax this
property and content ourselves with a lower function space.

In (Ahlberg et.al., 1967, p.19ff.) we find lengthy
derivations of such maximum approximation errors for different
classes of functions. We are not going to rederive the formulas
given there and present only the result specified to our case:

When K"(t) satisfies a Holder condition of order
a (0 <a<1)on [-1,1]

[K"(t) = K™(t')] < Alt-t']®,
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which is for the covariance function trivially true for a =1

IV(

and A = max|K t)] , then it can be shown that the approxi-
£

mation error of the third derivative can be estimated by

max|K" (t) - f"(t)| < 5lh max|K*V(t)| . (5-2a)
£ o

Applying the theorem of Rolle we can furthermore estimate the
maximum approximation errors for lower order derivatives and
the function itself:

max|K"(t) - £"(t)] < %-51h2maleIV(t)1 ’ (5-2b)
t £

maxl k' (2} - FF{L}] = %-51h3maxiKIV(t)( » (5-2¢)
= =

max|K(t) - f(t)] < 2-51h’max|K"V(t)] . (5-2d)

= e

It is quite interesting to compare this result with
the step function and piecewise Tinear function estimates. The
error of covariance function approximation depends on the
fourth power of the grid spacing and linearly on the fourth
derivative of the covariance function. Consequently, comparing
(3-2), (4-3) and (5-2d) we can give the following rule of
thumb: If the approximation function is an element of Kh[-l,lj >
the maximum approximation error depends on the (p+1)th power
of the grid spacing multiplied by the maximum absolute value
of the (u+l)thorder derivative of the covariance function.
Each differentiation, if it exists, decreases the dependence

to one power of the grid spacing.
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5.3 The spectrum of the cubic spline approximation

The cubic spline function within each subinterval 1is
given by equation (5-1). Tuhe Fourier coefficients are the
result of the projection of the spline onto the set of Legendre

polynomials. We

introduce (5-1) into (2-2b) and obtain

3 .
} [ ] aéj)(t-tj)RJPn(t)dt
= =

(5-3)

Expressing powers of t in terms of Legendre polynomials we get

In this

n

(33 . ) (3)
O(t)dt [ao a, tj+a2 t

2

(3)

25

(

J0) 3 (32
. -a tT+——— -a t,
j ] 3 J]

3 3

(5 3 00 - | (32,3 13}
(t)P, (t)dt [al 2a, ty+3a7 ti+ ag )

formula all integrals for n > 3

according to (4-7). The integrals with n
been calculated.

Summarizing we obtain:

* tj+1 - tj
VL R gl
¥ ?(tj+1 3)

£ o k31 el
o (t)dt [3 2,77 -2a7 ¢ ]

(5-3)°

can be calculated

<

3

have partly already
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tJ+1 4 . 1 3 t3 e
D { Pl BIR Lt = 7(tj+1- T 3)
i)
t_]+1
B O RS T - S O
| P ()P, (82t = glg(e], ~¢]) - F(t],, ~tD)]
J
t]+1
s 3
f - Bglepp (et = Ak, H)
]
t_]+1
R =% o] 4 ALY,
{ Pl(t)PZ(t)dt - Z[ ( oy tJ) (th J)]
]
hy +1 1
o B e B | BE Sl
I P (R ae = 383, -t - (8], -6))
j (5-4)
t)ﬁ—l
l Y T rrT ) T : RS L.
, AL UL S s Bl Ll R A
; J
| €
| Pl (typ (tydt - L[5(e° -t8) - 7(t! -td) + 3(22_-t2)]
% 3 8 ) 5 j+1 3 Lo R
J
tj+1
. AFES457 - _ats o - R Sl ol
{ PP, (t)dt = g[3>(e], -t L ot B LR
J
As in chapters 3 and 4 we also give here a simple
example. We choose J = 1 and approximate the covariance

function on the whole interval [-1,1] by a single polynomial
of third degree. In order to determine its four coefficients
‘ uniquely we need, apart from the function values at the end-
points of the interval, two additional informations about the
polynomial.
Since the polynomial is of third degree in t , it is
a linear combination of Legendre polynomials Po(t) - Pl(t) ’
P_(t) and P_(t) . The Fourier coefficients of this approxi-

2 3
mation result from the polynomial's projection onto the set

S Y
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{P“(t)} s n = 0,1,... . Therefore, we can already anticipate
the behaviour of the eigenvalues: the eigenvalues up to and
including degree 3 will in general be different from zero, all
others will vanish.

We approximate the covariance function by the cubic
polynomiai for two different boundary conditions; a) for first
order derivatives prescribed and b) for second order derivatives
given.

Let us now discuss polynomial (a):

The coefficients of the polynomial are uniquely determined by
K(1) o K(=1) s K1) o K'(=1}) .- At this point we must be care-

ful not toput K'(l) and K'(-1) equal to zero: K(yp)/dy is
zero at ¢y = 0 and y = n , but dK(t)/dt does not at all
vanish at the corresponding points t = -1 and t = 1 . Taking

this fact into account we obtain the following coefficients:

a_ = %[K(1)+K(-l)] - %[K'(l)-K'(-l)]

[K(1)-K(-1)] - z[K'(1)+K* (-1))

The projection of the polynomial onto the Legendre polynomials

givesthe eigenvalues

>
"

2n([K(1)+K(-1)] - é[ (1)-K' (-1])

(o]

vy o= FRelk(1)-K(-1)) - [k 1)+ (-1))

>
n

o = SRk (1)-K' (-1)]

e —
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by = S LK K(-1)] + [k (1) + K (-]

For the case of model 2 covariance function (Tscherning,

1976) we have calculated the approximating polynomial which is
presented in Figure 5.2. By forcing the polynomial to reproduce
the first derivative at t = 1 , we notice right away the poly-
nomials revenge: it produces much too big curvatures at t = 1
and, moreover, it dips into the negative so much that one of
the most essential conditionsof a covariance function

K(t) < K(1) 1is not satisfied anymore.

Fig. 5.8 Cubic polynomial approximation; boundary
conditions: first derivatives at the endpoints

Polynomial (b) based on function values and second
derivatives at the endpoints has even wilder features. The
reason is that Df_K‘L:1 is very big; therefore, it has a strong
influence and controls more or less the behaviour of the poly-
nomial over the whole domain. The coefficients are given by
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o¥]
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for the eigenvalues we obtain
A = 2nt[K(1)#K(-1)] - %[K“(1)+K“(-1ﬂ:

| Ay o= Bk -K(-1)) - F5 (K"(1)-K"(-1])

r, = SE[K"(1)+K"(-1)]

Ny = TR [K"(1)-K"(-1)]

Its behaviour is demonstrated in Figure 5.3 (note the scale).

R

————— \J‘
0.03

- ——

b4 0.01 0.02

Fig, 959 Cubic polynomial approximation; boundary
conditions: second derivatives at the endpoints
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It should be pointed out once more that all these
simple approximations to the true covariance function considered
were only presented in order to give an idea about its features;

nobody, however, is invited to use them. In any case: choose J pig!

6. Perturbation of the spectrum of the covariance function

Very important for all approximations is the question,
how much the spectrum is disturbed relative to the exact one
and what is the degree of the first vanishing or negative eigen-
value. Evidently, the eigenvalue behaviour depends somehow on
the degree of approximation. For comparison ‘purposcs we give

the relative eigenvalue perturbation q defined by

n

e I 1 - In
qn \ I
n
with Apvee exact eigenvalue,
.
A ... eigenvalue of the approximating function

for the approximation models considered here (Figure 5.4). The
covariance function chosen is again the model 2 covariance
function of the disturbing potential taken from (Tscherning, 1976).
The subdivision number J was set equal to 50, so that each inter-
val has a lenght of &4y = 3°6.

Let us discuss the diagrams shown in Figure 5.4 a little
bit more in detail:
a) The perturbation of the spectrum of the step function approxi-
mation seems to be strange from two points of view when compared
with the others. Firstiy, it differs significantly as far as the
high bulge in the low to medium frequency range is concerned
and, secondly, it shows oscillations of high frequency over the
whole range. Both phenomena are due to the simplicity of the
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element, the discontinuity of the step function. The bulge re-
flects the fact that the approximation reproduces low degree
eigenvalues reasonably, however, the higher the frequency the
bigger is the perturbation. From a certain degree on, which is
approximately 65 for J = 50 subintervals, the eigenvalues are
completely falsified. The high-frequent and small amplitude
oscillation of the spectrum comes also from the discontinuity
of the approximating function. It is, essentially, the "@Gibbs-
phenomenon", well known from mathematics. It occurs when dis-
continuous functions are projected onto smooth functions. The
higher J the better will be the approximation of the true
covariance function. Consequently, the amplitude of the bulge
will become smaller, its maximum will be shifted to the higher
frequency range and the amplitude of the Gibbs oscillation will
decrease. All consequences are inverse when J becomes smalier.
(Compare Figure 3.2 for J =1 .)
b) The linear approximation is already much better than the step
function approximation resulting in a relatively low bulge. From
degree 75 on for J = 50 the perturbation of the eigenvalues,
however, increases rapidly.
c¢) The cubic spline function approximation keeps the pertur-
bation quite low over a wide frequency range, approximately up
to degree n = 100 for J = 50

So far we have considered the absolute perturbation of
the spectrum of the covariance function. However, because of the
non-positive definiteness of all three approximation functions
the spectrum will not be positive over the whole range. From a
certain degree on the eigenvalues become negative and start to
oscillate considerably around zero. Figure 5.5 gives the de-
pendence of the degree n of the first negative eigenvalue on
the number J of subintervals.
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n
100 J spline linear step
350
r
O ”*11“ T T <)

| 50 100

Filg. 5.5 Degree of the first negative eigenvalue

dependent on the number J of subintervals

Again, we obey the quality of the spline approximation compared
with the two others. It is quite interesting that the dependence
is practically linear in all three cases.

Summarizing, the following conclusions can be drawn:
The perturbation of the spectrum (of the eigenvalues, of the
degree variance model) depends strongly on the smoothness of the
approximating function and on the number J of subintervals
chosen. Moreover, this dependence is almost linear (at least in
the frequency range considered here). The following relations
are rules of thumb and give an idea about the quality of
approximations in the spectral domain.
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Reasonably small perturbation of the spectrum:

step function ... n= 1.3 J
piecewise linear function ... n = 1.5
cubic spline function ... ho=.2 J

Degree of first negative eigenvalue dependent on the number J
of subintervals:

step function n=1.34d
piecewise linear function M= J
cubic spline function ... n =

So far we have studied the perturbation of the spectrum
of the global covariance function; for this purpose it was
advantageous to consider the approximating function as dependent
on the powers of t = cosy . This choice made it possible to
calculate the spectrum without numerical integration. However,
for applications (especially for local ones) it is more appro-
priate to change the independent variable from t to y itself.
The main advantages are:

1.) The function is now symmetric with respect to ¢ = 0

2.) A constant grid spacing corresponds to constant
physical distances between gridpoints.(The mapping
t = cosy maps an equispaced y-mesh onto a non-
equispaced t-mesh, and inversely, the inverse
mapping ¢ = arc cost maps an equispaced t-mesh
onto a non-eqispaced y-mesh which has disadvantages
for practical applications.)

3.) Using a cubic spline repesentation of the covariance
function, the spline subjected to the boundary
conditions DZK(w) at the endpoints, because of
its symmetry with respect to ¢ = 0 , can easily be
made to have a vanishing first derivative D K(v)

s e O e
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at ¢y = 0 . This fact has very important consequences: The

y-dependent spline can be defined in such a way that it exactly

reproduces the variance, the vanishing first derivative at

p = 0 , the curvature at ¢ = 0 and practically also the corre-
lTation length of the covariance function considered. These are
precisely cthe essential parameters of a covariance functicn
(Moritz, 1976) which control the prediction and, therefore,
should not be changed by an approximation procedure.

Not all of these requirements are met by the t-spline
which is, consequently, inferior to the y-spline. For these
reasons we shall work in the sequel with the spline, dependent
on the independent variable ¢ . Nevertheless, it should be

mentioned that the t-dependent spline as well as the y-dependent

spline approximation can be made arbitrarily close to the exact

covariance function when the grid spacing tends to zero.

7. Spectra of covariance function approximations in the plane

Many applications of collocation are local and not
global. In such a case it is convenient to approximate the
terrestrial sphere locally by a plane and to use planar equi-
valents to the covariance function defined on and above the
sphere. The covariance function, when considered in the plane,
is dependent on the Euclidean distance s between two points
£ and ¢

K(P,Q) = K(s)
with s =\/}xp-xQ)2 . (yP-YQ)2

Its extension into the halfspace z > 0 1is given by (Moritz,
1976, p.7)

(7-1)
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® -n(ZP+Z )
K(P,Q) = jdo(ns)G(n)e ndn
0
with Zon By s z-coordinates of P, Q ,
Jo(ns) ... Bessel function of first kind and zero order
G(n) ... Hankel transform of K

G(n) is defined in chapter 2.

In complete analogy to the spherical case , positive
definiteness of the function K is equivalent to a positive
spectrum G(n) for all n > 0 . The formulas of the approximating
functions (step function, piecewise linear function, cubic spline
function) are exactly the same as in the spherical case. The
variable t , however, has to be replaced by s ( the distance
in the plane z = 0 ):

L
) : k A
f(s)*)= ) a; )(s-sk)’

b3 (7-2)

with L =20 step function
Eoome l piecewise linear function
L =3 cubic spline function.

(k refers to the subinterval considered.)

We will now investigate, similarly as we did before in
the spherical case, how much the spectrum of the approximated
covariance function differs from the exact one. Since the Hankel
transform G(n) 1is the spectrum of the isotropic covariance
function K(s) considered here, we would have to calculate
G(n) . The positivity of G(n) 1is necessary and sufficient for
the positive definiteness of K{s) . A weaker condition which
must be fulfilled by K(s) 1is the positivity of its Fourier

transform
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Flw) = jK(x)cos(wx)dx . (7-3)

O

taken along an arbitrary straight line in the horizontal plane

z = 0 . Since all homogeneous and isotropic covariance functions
in the plane z = 0 are also homogeneous on any straight line

in z =20, from the positivity of the Hankel transform G(n) > 0
automatically results the positivity of the Fourier transform
F(w) . Therefore, F(w) > C is a necessary condition for a
positive definite homogeneous and isotropic furction in the

plane z = 0 . The question, whether F(w) > 0 .is also a
sufficient condition, was put in (Moritz, 1976, p.14). Let

us try to give an answer.

7.1 Conditions for positive definiteness of a homogeneous and

isotropic covariance function

The geodesist (including the author) is probably more
familiar with Legendre polynomials than with Bessel functions,
and, since he is usually working on the sphere, also with a
discrete spectrum than with a continuous one. Therefore, we first

investigate the spherical case and later on the planar one.

/7.1.1 Spherical case: the discrete spectrum and the Fourier

coefficiegﬁi

The homogeneous and isotropic covariance function,

considered on the unit sphere, has the form
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with positive coefficients kn . The spectrum of K(t) vresults
from its projection onto the set of Legendre polynomials
(cf.(2-2b) )

with t := cosy , ¢... spherical distance.
Due to the mutual orthogonality of Legendre polynomials we obtain

e - 2
€ % ey k“ g (7-6)

which is, apart from the constant 2w , the eigenvalue of the
covariance function K(t) . Since kn was assumed to be positive,
also o is positive. The positivity of all < is, consequently,
a necessary and sufficient condition for a homogeneous and iso-
tropic covariance function on the unit sphere.

The question is, whether also the positivity of all
Fourier coefficients

§ =

n

K(y)cos(ny)dy {7-7)

O —=3

is a necessary and sufficient condition for a homogeneous and
isotropic positive definite function. (The projection of K(y)
onto sin(ny) 1is zero because of the symmetry of K(y) with
respect to the origin ¢ = 0 .) Taking into account the fact
that

cos(ny) = cos(narccost) = T (t) (7-8)

n

is the Chebyshev polynomial of first kind and order n , and
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observing that

the Fourier coefficient f can be written in the following

n

form:

}K(t)Tn(t)

f = dt (7-9)
T 8 e

Since the inner product of Chebyshev polynomials of first kind

is defined by

1T (t)T (&)
<T ,T > = [= = dt
SR B 1§

with the non-negative weight function (1-t )'1/2

,» the right
hand side of equation (7-9) is exactly the projection of K(t)
onto the Chebyshev polynomial Tn(t) . Formulas (7-6) and (7-9)
are indentical; therefore, the Chebyshev coefficient fn from
(7-9) is identical with the Fourier coefficient f“ from (7=7).
Explicitely written, the Fourier (or Chebyshev) coefficients of

the covariance function are given by

[,L,k,Py (£)]T (%)

1-t

dt . (7-9)"

:—h
1}
——
N

This equation is a link and allows an insight into the relation
between the spectrum . of the covariance function, given by

eq. (7-5) and its Fourier coefficients. A1l we have to do is to
find a transformation between Legendre and Chebyshev polynomials.
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This transformation can easily be found by expressing
the Legendre polynomials in terms of powers of its argument t ,
and then, by expressing the powers of t in terms of Chebyshev
polynomials (Davis, 1975, pp.369-372):

P =T
o] o]
Py = Ty
P, = %(T & 3.
s = (7-10)
el
P3 = §(3T1 + 5T3)
33
Py * EZ(QTQ + 20T, + 35T,)
1

P. = 17g(30T, + 35T, + 63T,)

(The clever reader will find that equation (1-58') in (Heiskanen
and Moritz, 1967) is exactly this transformation.) Taking these
relations into account, we can express the covariance function
K(t) 1in terms of Chebyshev polynomials

K(t) = ; d T.(%) (7-11)

with coefficients {dn} which can be related to the spectrum
{cn} . Taking into account the orthogonality of the Chebyshev
polynomials with

2n for n = m =
<T ,T>=¢x for n=m# 0, (7-12)
n m
0 else
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we can relate the coefficients dn to the Fourier coefficients
fn and obtain, after substitution of (7-11) into (7-9)

.= 5 4 =T 5T > (7-13)

Therefore, the coefficients dn in (7-11) are, apart from the
constant factor = , identical with the Fourier coefficients fn
Comparing (7~-11) with (7-4)

K(t) = } dnTn(t) =) knPn(t) A (7-14)
n=0 n=2
we find with the help of the transformation (7-10)
n
P {t) =) a T (L) (7-10)"

the desired relation between kn (cn , respectively) and dn
(fn, resp.):

d_ = cf a_ k (7-15)
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] 1 9 [
[dol 1 0 7 0 & kﬂl
p {
: ! | 3 l
ldy | 0 1 0 50 k1"
i |
|
| | 3 5 _1c
|| |0 0 7 0 k, (7-15)
d 0o 0 0 2 o | &
i 3 8 3
{‘dd,' 0 0 0 0 %2 K,
o
; %
i | - = =

We stated at the beginning that the positivity of all
g ¥ NS 2,3,... quarantees the positive definiteness of the
covariance function given by (7-4). Since all coefficients of A
are non-negative and by (7-6) naturally remain non-negative
when we use the spectrum {cn} instead of {kn} s &1 Fourier
coefficients are positive when all c, are positive. Therefore,
the positivity of the Fourier coefficients is a necessary con-
dition for the positive definiteness of a homogeneous and iso-
tropic function on the sphere.

In order to find an answer whether this condition is

also sufficient, we need the inverse of the matrix A . It is
very simple to find the inverse: recall that A is the matrix
transforming Chebyshev polynomials in Legendre polynomials; conse-

=1

quently, A is the matrix transforming Legendre polynomials

in Chebyshev polynomials

T (t) =¥ o e (e) , (7-16)
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explicitely written

T, = (- P_ + 4P)

(7-16)"
o
Ty = ml~ 3F, + 8Ry)
. s
T, = 1og(- 7P, - 80P, + 192P,)
g 3
T, = gy(- 9P, - 56P, + 128P,)

Substituting these relations into (7-14) we obtain in analogy to
(7-15)

k= E a;;dm (7-17)
8
k = A"'d ,
—koj BT s 3 0 -z 0N 1
K, 0 1 0.~ 0 d,
k, o0 4 0 - 3T o v d, (7-17)"
K, o0 0 g 0 d,
K, o0 0 0o % d,
25 98 T
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The two matrices A and A'1 are interesting because
of some similarities:
a) both have upper triangular form, therefore, the main diagonal
elements are inverse to each other.
b) their sum of column elements is constant and equal to 1;
therefore, the following relation holds:

an = an s

c) the elements have alternating the value zero and non-zero;
consequently, the even kn depend only on even dn , odd
kn depend only on odd dn, and vice versa.

However, apart from these similarities, there is an
essential difference between A and A~

elements of A~} are zero or negative. Therefore, the positivity

all off-diagonal

of all dn does, in general, not guarantee the positivity of
all kn and we can state the following:

The positivity of the Fourier coefficients of a homogeneous
and isotropic function on the sphere , taken along an arbitrary
great circle, is a neccessary but not a sufficient condition for
the positivé definiteness of the function considered.

According to (7-17)' the set {dn} has, apart from its
positivity, to fulfil the following condition in order to
guarantee the positive definiteness of the homogeneous and iso-
tropic function on the sphere:

sl

» 2
n+2k
Oy " kzl =1 n+2k \F418)
5 3nn
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7.1.2 Planar case: the continuous spectrum and the Fourier trans-

form

The fact that a positive Hankel transform causes a
positive Fourier transform was already stated at the beginning of
this chapter and proved for chc spherical case by (7-14)'. It
can naturally be expected that similar relations also hold for the
planar case;, therefore, we will not give a detailed derivation
here. However, the inverse question, whether a positive Fourier
transform guarantees a positive Hankel transform seems to be of
some interest.

We are always concerned with symmetric functions and,
therefore, the Fourier transformation reduces from

F(o) = [K(s)e **%ds
to

F(u) = [K(s)cos(ws)ds , i (7-19)
with K(s) ... function to be transformed

S <« distance

W ... frequency.

Because of the symmetry, equation (7~19) can be further simplified to
Flw) = 2 f ¥K(s) cos (ws) ds. (7-19)"

In the sequel we shall use the first derivative of the Fourier transform
which is simply given by

F'(w) = dF(w) . -2 z K(s) sin (ws) sds. (7-20)
dw

In order to obtain an integral representation of the Bessel

function of first kind and zero order Jo(x) in terms of a trigonometric
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function we have to take advantage to Bessel functions of third kind and
zero order which are also referred to as Hankel functions {Lebedev, 136%,

p. 107 £f)

g G & n S ) = sauixd (7-21)

O
The corresponding integral representations are given by

) i
Ha( )(x) = gﬁ 7 eixcosha,, (7-22a)

1l

2 . ( .
g3 ey e i g o RRTRMG e (7-22b)

Observing (7-21) we can with the help of (7-22a,b) derive the inteqgral

representation of the Bessel function of first kind and zero order

34 (%) - e1xcoshu_é1xcoshu) do

the expression above can be simplified to

Jo(x) =-% / sin (x cosha) da
Since cosha is symmetric with respect to « = 0 we obtain

Jdo(x) = / sin (x cosha) do

This equation expresses the relation between the Bessel function of first

kind and zero order and the trigonometric function sin (+) in full analogy

with the spherical case (cf. equation (7-10). Consequently, it

provides a link between the Hankel- and the Fourier transform.

daduntion
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Recall the definition of the Hankel transform (2-5)

e +]

G(w) = J Jo(ws) K(s) sds

0

and substitute (7-23), then we obtain

G(w) = -— S [-2 7 K(s)sin(ws cosha)sds ] da
0
The expression in brackets, however, is according to (7-20) exactly
F'(wcosh a),

and, consequently, the relation between the Hankel transform G(w)

and the Fourier transform F(w) is given by

F'(w cosh a) da . ' (7-24)

fep
€
n
]
5 |—
o 8

Since the positivity of the Hankel transform guarantees the positive
definiteness of a homogeneous and isotropic function in the plane 2=0,
the Fourier transform has, apart from its posftivit;, to fulfil

-/ F' (w cosha) da > 0.

0

7.2 Fourier transforms of covariance function approximations in r

the plane

For three reasons we leave now the Hankel transformation
and work with the Fourier transformation:

a) We will investigate the problem of covariance function
approximations by finite element models; therefore, we are
primarily interested if these approximating functions fulfil
the necessary condition for positive definiteness which is
defined via the Fourier transform and, if not, what the degree

of non-positivity is.
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b) For numerical studies we choose a very simple model, the
Gaussian covariance function. It can be shown (Moritz, 1976,
p.19) that, apart from a constant factor, the Fourier and
the Hankel transform coincide for this model. Therefore, it
can be expected that the Fourier transform of the approximating
function does not differ much from the corresponding Hankel
transform. ’

c) The calculation of the Fourier transform is much easier than
that of the Hankel transform: in the latter the integral
kernel consists basically of the Bessel function of first
kind and zero order which can, for arbitrary argument, only
be calculated by numerical integration; in the former case,
the integral kernel is a simple trigonometric function.

We will, as in the spherical case, investigate the step
function, piecewise linear function and the cubic spline function
as approximating elements. Because of tne symmetry of the functions
with respect to s = 0 , also the Fourier transform is symmetric
with respect to the Frequency w = 0 , and moreover, the imaginary
part vanishes identically. Consequently, the Fourier transform
which will be denoted by "spectrum" in tbe sequel is given by

o0

F(w) = 2[K(s)cos(ws)ds
)

The different approximating functions are put in a closed form
by (7-2)

37 L
s) =) a
2=0

(
j L
i Gl T

where L assumes its maximum for the cubic spline (L = 3)
Therefore, we will derive the spectrum for thi& function; the
spectra of the other (inferior) functions can then be obtained
after specialisation.
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Theoretically, we should calculate the integral over
the whole domain - = < s < @« ; however, since practically all
covariance functionstend to zero dUickly, we can limit ourselves
to a finite interval. This interval will be subdivided into J

subintervals bounded by the mesh points s. , s . The inter-

j j+1
polating function defined ca this subinterval [sj s e (SR (T

+1
be denoted by fégﬁ ; its equation is given above.

We calculate, therefore, the Fourier transform of the
interpolating (approximating) function f(s) <consisting of
functions f(j)(s)

F. Ty -
Flw) = 2 ) [f3)(s)cos(ws)ds . (7-26)
j=1 s.
J

Substituting for ff3)(s)we obtain

O ST
Flu) =25 ] a,’ ch () (7-27a)
§=14=0 *
() i 2
C,” " (w) = [ (s-sj) cos(ws)ds . (7-27b)
) s

For reasons of a compact notation we also define the functions

sJ+1

Séj)(w) = | (s-sj)zsin(ws)ds : (7-27c)
S,
j

Performing the integrations in (7-27b,c) and putting




48
we arrive at the following expressions:

j 1 ; .
I (u) = Slsin(usy,,) - sxn<msj)}

(o]

s'3) (4) = - 2[cos(ws,,,) - cos(ws,)]
o o ; j J
(3) o 1re(3) N T Es 1

C1 (w) = - ;[SO (w) Q‘S]U(ASJ+I)J

(7-28)

(3 1 ' D e

;0 (w) = - =[3553 () - aysin(us,, )]
(3 1 - 3

533 (w) = =[3¢{? () - A;COS(mSj+l)]

With the help of these relations we are able to calculate the
Fourier spectrum for all functions chosen here. For our numerical
example we have used the Gaussian covariance function of gravity
anomalies defined by

N

-1n2 (=)
Elg) = tae {7=29)

(o)

=l

with the following parameters:

C( = 1600 mga12 ... variance of gravity anomalies

h = 60 km ... correlation length.

(the variance GO of the horizontal derivatives of the gravity
anocmalies Ag assumes the value G, = 60 E° 3.
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The Fourier transform of this model is given by (Moritz,
1976, p.19)

wn)®

Flu) = C M, e 472 (7-30)

For compari.on purposes we give also the Hankel transform which
differs from (7-30) only by a scale factor:

)

( mhi)‘_“

" 41n2

)

3 ) h™
()(u)) - C()?’TW e

Similarly as in chapter 6 we define the ralative perturbation of

the spectrum by

| l";(‘) |
a(w) = |1 -

with F(w) ... exact spectrum (eq. 7-30)

F(w) ... spectrum of the approximating function.

For the three models discussed here, q(w) 1is shown in figure
7%1. According teé the defipnition of © = 20/l (T, s period)s
w = 1 corresponds to a wavelength of 2n km when the distance s
is counted in kilometers. Therefore, w = 0.1 corresponds to
2n+10 km which is approximately the correlation length chosen
here. The subinterval length A was set constant and equal to
30 km (1/2 of the correlation length h ).

From figure 7.1 we can draw the foilowing conclusions:
For the spline approximation the perturbation of the spectrum
is practically zero up to w = 0.05 which corresponds to a
wavelength of h/2 ;5 until w = 0.1 it increases modestly and
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q(w)

# linear

///// spline
0.5

0 - T o5 S )
0.05 @, 10

70 s T Relative perturbation of the spectrum (planar case)

from 0.1 on it is falsified too much. The_vanishing perfurbation
for small w expresses the fact that the lTow frequency part of
the spectrum is very well represenied by the spline. The situation
is different for the piecewise linear function and the step
function where the perturbation is already considerable in the
very low frequency part which is not sufficiently well re-
presented. Similar as for the spline, the perturbation becomes
very big from w = 0.1 on. From the first view the reader will
probably conclude that the author has made a mistake by changing
the curves for the piecewise linear function and the step function.
However, this is not the case. The reason that the low frequency
part of the spectrum is worse represented by the piecewise linear
function lies in the fact that for small s (the most important
part of the covariance function) the interpolating linear function
remains below the exact one and, therefore, causes an under-
represented low frequency part of the spectrum. In order to show

T ——
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F!m }'F!m)
F(0)
0.05 —J

linear

step .

spline _

-0.05 4

5 1 Perturbation of the spectrum normalized by F(O0)

the difference between the exact spectrum and the spectrum of the
apprcximating function we have drawn figure 7.2. It shows the
deviation of the two spectra normalized by F(0)

Whereas the low frequency part of the spectrum is better re-
presented by the step function than by the piecewise linear
function, it is much worse in the higher frequency part (this
strong perturbation comes mainly from the discontinuity of the

approximating function). For the spline the relative perturbation
remains below 5-10 4




7.3 Consequences of a spectrum perturbation

After having discussed the spectral behaviour of co-
variance function approximations so detailed over many pages, it
is time to justify these investigations.

The greatest advantage of collocation in geodesy, at
least in the author's opinion, is the possibility to combine
heterogeneous data which are somehow related to the gravity field
of the earth. The Tink for data combination is the covariance
function which, therefore, plays such an essential role in collo-
cation. In order to obtain covariances between different data
types we have to apply the corresponding operators on the co-
variance function according to the law of propagation of covari-
ances (Moritz, 1972, p.97).

The operators are of differential and integral type. The
first group, the differential operators, applied on the covari-
ance function, are "dangerous" (at least for covariance appro-
ximation models). Therefore, we will briefly sketch its intrinsic
properties. We are only considering the distance dependent co-
variance function here.
ay Differentiation

Let us again consider the covariance function of the
potential in its basic form on the unit sphere

K{t) = r)1|<npn(t)
and Tet us denote by k(t) its approximation by some model with
corresponding coefficients kn . Take, for example, the cross
covariance between the geoidal height and the deviation of the
vertical. Then we have, besides other trivial manipulations, to
differentiate the covariance function with respect to the inde-
pendent variable t
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Lk P! (t) (7-31)

' 'y 2l e AL g
with P! (t) peies. LtP_(t) P

(t)] - (7-32)

n-1
The analogue expression for the approximation is

K'(t) = Tk P'(t) . (7-33)

n n

Equation (7-32) tells us the principal action of differentiation:
it acts as an amplifier. The higher the degree n , the higher
will be the amplification because, basically, k“ is multiplied
by n . Consider, now, the error

A'(t) = K'(t) - K(t) = I(k_-k_)P!(t)
= - J(k -k )1”t2 ftp (k) =P (%)) . (7-24]

It is obvious that the error A'(t) 1is very sensitive to the
error kn-ﬁn which is related to the perturbation of the spectrum
by (2=3)" .

Similar as in the spherical case is the situation in
the plane. Let the covariance function be defined by C(s) via
the Hankel transform of its spectrum (the Hankel transform is
involutoric for quadratically integrable functions in the plane)

0

C(s) = [I_(ws)G(w)wdw . (7-35)
O
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Its differentiation with respect to s 1is given by

o BJO(wS)
C'is) = | o G(w)wdw ,
O

which, with the help of (Papoulis, 1968, p.168)

aJo(wS)
—-—a—s—‘-‘: - le(wS) (7'36)
(Jl(x) is the Bessel function of first kind and first order)

assumes the form
C'(s) = - le(mS)G(w)wzdw : (7-37)

Since Jl(x) has, basically, the same amplitude behaviour as
Jo(x) , the term o (instead of «w in the usual transformation)
acts as amplifier and plays, therefore, the same role as n in
the spherical case. The error of the differentiated covariance

function is, in analogy to (7-34) given by

oo

a'(s) = C'(s) - C'(s) = - [I,(ws)[6(w) - G(w)]w’dw (7-38)
0
with C(s) ... approximated covariance function,
G(w) ... its corresponding Hankel transform.

In view of these facts we conclude that it is extremely important
to know, up to which frequency the spectrum of the approximating

function is well behaved and at which frequency it starts to be-

come falsified. Since the perturbation of the spectrum depends

on the smoothness of the interpolating element used and on the
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length of the subinterval chosen, which was shown in the last
chapters, we can select the proper function together with a
certain grid spacing as soon as we know which collocation prcblem
we are going to solve. Especially when differential operators
are involved, the study of the perturbation of the spectrum is
of considerable importance.
b) Integration

More pleasant,as far as errors are concerned, are
problems which involve integrations of the covariance function.
In contrast to the differentiation, the integration has a smooth-
ing effect and, consequently, we are much more free regarding the
choice of the interpolating element and the length of the sub-
interval.

Take, for example, the integral of the covariance
function over the interval [t_, t ],

2
flK(t)dt = anijn(t)dt ‘
to n to

then the corresponding approximation error is given by

oy k -i
{A(t)dt = Z_zm[pn+l(tl) 3 Pn-—l(tl) * Pn—l(to) %
A (7-39)

/ JO(wS)AG(w)mdwdS 3

which, however, lead to rather complicated expressions involving
Struve functions (Siinkel, 1977, p.133). For the Fourier trans-
form it is much easier to give an error estimate
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] S

1 0 °1
J aC(s)ds := 2 [ [ cos(ws)AF(w)dsdw ,
So w=Os=%

which can be simplified by considering (7-28)

) - Sin(wso)]AF(w)dw . (7-40)

[ aC(s)ds = 22%[sin(msl

The smoothing properties of the integral operator are
evident from the fact, that in (7-39) and in (7-40) the fre-
quency occurs in the denominator and, therefore, damps errors in

the high frequency part of the spectrum. Consequently, for collo-
cation problems involving integrations of the covariance function,

even such approximating functions can be used which give rise to
relatively big perturbations in the high frequency part of the
spectrum, like the step function (cf. fig.7.2). The treatment of

operators like differential and integral operators in the spectral

domain is, therefore, very well suited to give an idea of its
intrinsic properties. After having knowledge about the problem
to be solved, we can directly select the proper apprecximation
element together with the Tength of the subinterval. This is an
important completion of the error estimates given in chapters 3,
4 and 5.

8. Errors of prediction caused by approximations

In the preceding chapters we have tried to give rules
of thumb for the errors which have to be expected for different
covariances, being elements of the covariance matrix. The under-
lying principle was bilateral: on the one hand we gave maximum
errors derived directly from the approximating function chosen,
on the other hand the estimations were obtained via the study of

s
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the perturbations of the spectrum. Both results supplement each
other. These investigations were absolutely necessary because
they provided us the information about the errors of the elements
of the covariance matrix and the signal-measurement covariance
vector.

ihe approximation, so to say, perturbs the elements of
the Tinear transformation between measurement x and predicted
signal s_. The two formulas we are pri.arily interested are

P
(Moritz, 1970, p.7)

AP = p
Sp = CPC % % (8-1)
2 ¥ Y s
e, 2 CPP CPC CP (8-2)

with X vector of measurements

C ... covariance matrix of measurements
Sp o predicted signal
%)... covariance vector between signal Sp and

measurement x
mean square error of the predicted signal Sp

variance of the predicted signal s

PP " P

(We do neither consider a systematic part nor noise in the mea-
surements.)

By the approximation of the basic covariance function,
in general, all covariances are disturbed to some extent. In the
following we make some attempts to estimate the consequences of
the approximation for the predicted signal and its mean square

error.

8.1 Error norm estimates

Let us consider covariances being elements of C and

CP which differ slightly from its exact analogues C and CP
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(8-3)

Then it can be expected that also the signal ép resulting from
the prediction process (8-1) differs only slightly from Sp

8. 5 S * 48, . (8-4)

With (8-1) - (8-4) the signal approximation error 65P can be
obtained by

T : (8-5)

The Tast expression within the brackets can be split according
to (8-3) into

CSOSRREE AR T SRR (8-6)

If the matrix C 1is reasonably stable, we can expect that the

inverse C~! is close to the exact one C!

(C - 5(:)‘1 = C'1 + 6K (8'7)

-1

with 6K small relativ to C Consequently, the following

relation holds with sufficient accuracy:

(C = sCHC™! + 8K) = ]

gLt « 3ECTY o LAk - sCak

I « 8CC™" + Tk




L e et g~ —— e - ——

l)(’

which gives
§CL * (8-8)
so that

ARSI T o SRR b & g el (8-9)

with I denoting the unit matrix. Analogously we simplify

equation (8-6)

C£C‘1 - (cl - @cg)c“(I +oate™ 1

so that the following relation holds for the signal approximation

error:

§s_ = (8CT - cIctsC)CTMx . (8-5)"

In a similar way also the approximation error of the mean square

error can be found. Let us denote this error by
ém? := m? - m? (8-10)

and the approximation error of the signal variance by

¢C = C - C
PP PP PP

If we neglect, as above, products of small terms, we obtain

sm = §C - (SCI'C—1
p PP P
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Since a real number does not change under transposition, the

following relation holds:

so that the above expression for Amé can be further simplified:
(8-10)"

From the equations (8-5)' and (8-10)' we can already
conclude that it is impossible to give an idea about the approxi-
mation errors of the signal and the mean square error as long
as information about C—1 is not available. C , however,

depends on the data configuration, and so does il

Therefore,

it is not easy to give error estimates without having information

about the intrinsic properties of the covariance matrix.
Introducing some kind of norm denoted by || - || and

recalling the relations

HAB Il < Al I8l

. 2
we can give upper bounds for the errors §S 5 and emy

| iy | Tl | -1 | | -1 |
lesgl < (Il aColl +11Cg Il e 1 Hsc i) [He™ql (x|l » (8-11)

| &m? | ' | T e T ne=4y |
lome] < 1| sC 1+ (2([sC 1l + [ICTII IIC™HI |16 || )

|
pp! P

(8-12)

| -1 |
~{1C I \lcpii
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The following example may give an indication how pessimistic these

error bounds are:

Let us consider two points Pl and P separated by the distance
1 , and measurcments X8 and x., at these points. Predict
the signal s , which is of the same type as X and %X, , at
the midpoint of the straight line connecting P] and P; . The
covariance function is Gaussian and given by C(s) = exp(-s”). The
exact covariances have the values
1 0.367879 | .
C {5 CP (0.778801 , 0.778801)
! 0.36/879 1 }
L o
As approximations we choose
b 0.36 | 2
C = o £ = {0.77 , 8.77) ;
0.36 | S :

the data have the values

Performing the trivial calculations according (8-1) and (8-2)
we obtain the following results:

Sp = 1,708 m. = 0.113

s = 1.699 m

p = Qe L2i8

N TN

so that the errors assume the values

5s_| = 0.009 | ém%| = 0.015
P P

o . S— o
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With the max-norm
| x|l = max ;xii . X vector,
i
[|A || = max )}aikJ - A matrix,

i k
which are very easy to calculate, we obtain the estimates

| #5512 0.059 |emo| < 0.034 ,

which are obviously very pessimistic compared to the exact

differences calculated above. Worse results are obtained with

the Euclidean norm

B il T

x| = XX X vector

1A [|2 = tr(ATA) , A matrix  (tr ... trace):
| g2

{k‘," e 0,132 i-@mp1 — 0.089

Finally we consider the estimates provided by the

spectral norm defined by

| x| = (xx)ree X vector

|\l Al = Knax ° A matrix
with «k° := AATA s A eigenvalue. Since, in our case, all
matrices are symmetric, the product

AA

e —— ————
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and the eigenvalues

so that

| Al

max
holds. For this norm we obtain the estimates

|6s,| < 0.094 [sm5| < 0.067

As long as matrices are involved, the spectral norm gives the
smallest value; if, however, vector norms enter into the esti-
mation, the max-norm defined above is, for vectors, smaller or
equal to the Euclidean one. This is the reason why the estimates
for the max-norm obtained here are smallest. This, however, can-
not be generalized.

At this point it seems to be worth to put the question,
which condition has to be fulfilled by the approximated co-

variances in order to guarantee the following basic condition:

(8-13)

The first condition is equivalent to non-negative mean
square error, so that no imaginary root mean square error can
occur. (It looks trivial, but it is essential; some polynomial
approximations of the covariance function do not fulfil this
condition.) The second one is also necessary since the error
variance cannot be bigger than the variance of the signal.
(Adding one single measurement, the mean square error has to

decrease.)

—— - S—

_——
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Both questions can be answered immediately:

e

"T-17 . o
R ol e (8-13)

is a necessary and sufficient condjtion for (8-13). tgé_lép > C
is true if the covariance matrix C 1is positive definite. (We
neglect here the equality sign and do not speak about semi-

definiteness.) Positive definiteness, however, is equivalent to

positive eigenvalues; therefore, the spectrum enters here again.

8.2 Perturbation of eigenvalues

Let us again consider the covariance matrix C which
is disturbed slightly giving C€ and suppose that 95 depends
on a parameter e in such a way that it reduces to C for
e = 1 (the approximated covariance matrix in consideration)
and te € for e = 0 . We follow here(Eriedrichs, 1973, pp-213).
Let CE be analytic in € ; it then admits a representation

Ct =L & b, 2 e‘C2 B e (8-14a)

with bounded Cl,... In the same way w2 expand the eigenvalues

A, and corresponding eigenvectors ¥, of CE

Ao =R + eh, % t“xz g (8-14b)
Y. =y * ey, + 52y2 ;A (8-14c¢)
()‘ =2 for e =1 g s Ko [ o, A g 1 S ¥, 8 ; e ] I i R

y. = 3y for & =0 .)

>
The relation between CF s A and Y. is called the eigenvalue

problem

-y —— ———
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(C. - 2 )y =0 . (8-15)

Substituting (8-14a-c) intr (8-15) we obtain

2 2
eCl + e C, +...)(y + G, e N, i)

-~
TS
+

2 2
= (A + er, + e"A, A e¥, ® & ¥, )

We order with respect to powers of € resulting in a sequence

of equations:

(C-2A)y=20
(C - Ny, = - (C, - r)y (8-16)
VG = Rpyns =t (el =0, e Wl G e ALY

Here we restrict ourselves to expressions linear in € . Since

C and its disturbance is symmetric, we note that

n

y [(C - x)z] =0 (8-17)
holds for every vector z . This follows from

yT[(C - Al)z] = ZT[(C - A)y)] =20=0

because y is eigenvector of C . Therefore, we premultiply the
second equation of (8-16) by yT and obtain

y' [(C - Dy, = -y [(c, - 2, 1)y],
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which gives zero because of (8-17):

This equation can be split into
- T
¥yl y=2yy .,

and we can express A in terms of the eigenvector y and

the disturbation matrix C, |,

1

o
y Cy

NoE (8-18)
¥y

If y is a normalized eigenvector, (8-18) can.be simplified to

Ay = X LY
Translated into our problem ( C1 corresponds to - &C , xl
corresponds to - &2 ) it has the form

§x = y 6Cy (8-19)
with ( € 1is put equal to 1 now)

AR 4B, E el - . (8-20)

It is fairly easy to give an upper bound for the eigen-
value perturbation 6x when the spectral norm is used. Since the
eigenvector y is assumed to be normalized it has the Euclidean
norm (length) equal to 1

‘I.Y;:\: l

Ty ——
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and the norm of 6C is given by its largest eigenvalue
H<5CH= maxH&.(_‘j ’
so that

lsx| < maxlx6c1

The norm |6Ax| , again, plays a fundamental role, because,
according to (8-20), its value relative to A tells us whether
we can be sure that all eigenvalues of C are positive (what
is equivalent to positive definiteness) or not. If

| |
maxM\(SC]

> min Ao o (8-21)
we have to be very careful as far as the positive definiteness
of C is concerned (this is an essential condition).

An idea about the variation of AC and A sc might be
provided for some stable problems by the third theorem of
Gershgorin (Wilkinson, 1965,p.71 ). According to this theorem,
all eigenvalues Ay (7§ = Li00ey N) 6Ff & (0 X0} matryx A are
situated within the union of the discs (Fig.8.1)

|1z - a,.| < g T2y g (8-22)
Pl

When A is symmetric, the complex number 2z reduces to a real
one and, consequently, the disc degenerates to an interval on the
real line. In view of the Gershgorin theorem the condition for
positive definiteness of é can be put in the form

mgxlécii + lécij| | < min(c,, -'i ek & (8-23)

i j=1 i
j#i

—— — — . )
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Fig. 8.1 Third theorem of Gershgorin

For the example discussed above this condition is certainly ful-
filled:

n
max|éc..  + ) |sc..| | = 0.007879 ,
" ii 551 iy
j#L
n
min(c,, - ) ;cij[) = 0.632121
i j=1
: j#iL

.3 Stochastic error estimates

Up to now the error estimates were derived from a purely
deterministic approximation procedure without any stochastic
interpretation. Although in such an approximation problem there
is really no stochastic background, it might be sometimes (at
least when large problems are treated) useful and appropriate
to consider the disturbances of the covariances as a sample of a
stochastic process. In this way the elements of GCP and &C
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are considered as random variables of a second order stochastic
process uniquely described by the expectation E{-} and the
variance E{--} f

Let us recall equation (8-5)':

o=dsp,e=6C,a=-CC ,O=<SC,b=C_lx;

with these notations the equation above can be written in the
form

o= (6 +a’o)b (8-24)

where a, b ... deterministic vectors
stochastic vector
stochastic matrix.

For the statistics of 6 and © we make the following simpli-
fyirg assumptions:

E{ei} s 0 7, E{e,0,} = a"6,. ,

E denotes expectation in the probabilistic sense,

Wi 4w 6ij is the Kronecker symbol .

I~ N e
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With these assumptions it is easy to show that the expectation

of o vanishes:

.
Efo} = E{6,.}b, %+ a _Efe. }b, =0
i ¥ i i J
For the variance of o we derive
T B : \
Efe“} = E{(oib.l + aiwijbj)(ekbk + akokaQ)J

"

E{eiek}bibk + 2E{oij9k}aibjbk

+ E{o© }a.a. b.b

ijokl Tler e 2

which, by (8-25), becomes

R w i
Edo™F = & éikbibk + a 6ik6j2aiakbjb2

= uz(bAb, + a,a.,b.b.)
s g | > G T
or E{g?} = aszb(l + aTa)
After back-substitution for a and b we finally get

, 2 Tp-1n-1 To=ln=1
E{ésposp} = o % G B TR L ook CPC i CP) (8-26)
This is the mean square error of the predicted signal due to the
approximation with the assumption made above. Similarly we can
derive the mean square approximation error of the mean square
error of the prediction. Recall (8-10)'

2 . _ T _ oTo=i -1
ém2 = sC, - (28C3 - cicTleC)CTic,

* ... We make use of the summation convention.
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which, with 2= SmL . Y S §Cop and 6 , 90, a as before,

can be written as
T J
= ¥y + a (28 + 0a) , (8-27)

where vy is a stochastic scalar with

2 2

E {} = 0 N E{y F o= A ’

(8-28)
E{va.} =0, Efye. ¥ = 0
i L]

As before it can immediately be verified that E{u} = 0 . For
the variance we derive
E{u*) 4 8. A ) + SRS >
Blu E{(y + 22,0, + aLliJaj)(( 8,0, 3,0,,3,)

{ ,f" - ( } ) A{q (%) }

E{y + AE{,i‘yaj + 2E4wij(}aiaJ + 4E ), 0, ta a,

{0,.0, ] + ©,.0. , }3
+ 4E Jjuk;alajak E{ 14k dlajakav ,
which, by (8-25) and (8-28), becomes
2 2 2 2
™k = a 8 T o
Ed=1 a” + 4a $% %1% il © - jVaxa]akav,
01 + 4 + a.,d,a )
= o ( aid '(1 kak
2 2 T T |-

or E{u’) = a“[1 + a"a(4 + a a)]

After back-substitution for a we finally get

2i: = adl To-1p=1n Tamlp=1pn 11 :
Efu?) = o [1 4 CTCTICTIC (4 + € LTICTTCL)) 0 o (8-29)

.y —— o
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The variance uz of the deviation of an element of C or EP

from the true values can be estimated as soon as the problem is
defined and the approximation model is chosen (see chapters 2-5).
For small a2 . CP and C can be replaced by ép and é >
respectively, so that equations (8-26) and (8-29) provide imue-
diately an estimate of the conseguences of the covariance function
approximation. Although the stochastic model discussed here

does not reflect the physical reality, it can be very useful and
gives, at least for large scale applications, not such pessi-
mistic error estimates as we obtain with norm estimates. The norm

Y

of 6CP and 6C is, so to say, replaced by the global value «a°

9. Approximation of the spatial covariance function

by a bicubic spline function

So far all our approximation models discussed here were
restricted to the sphere or plane only. Since geodetic measure-
ments are performed at points on and outside the surface of the
earth we need a spatial covariance function in order to be able
to combine heterogeneous data in a consistent way. The basic
properties of the covariance function have already been dis-
cussed in chapter 2 where we have pointed out that the homo-
geneous and isotropic covariance function harmonic outside some
internal sphere depends essentially on two variables only, the
product -rPrQ and the spherical distance ¢ . This fact will
be used here for an approximation of the covariance function by
a bicubic spline function.

9.1 The bicubic spline function

A short definition of a cubic spline was given at the
beginning of chapter 5. The bicubic spline is just an extension
to two dimensions: A function consisting of bicubic polynomials




defined on a regular grid is called a bicubic spline function if
it is twice continuously differentiable with respect to each
independent variable over the whole domain and if it fulfills
certain prescribed boundary conditions on the boundary of the
domain. If this spline interpolates data it is called an inter-
polating bicubic spline. The coefficients of each bicubic poly-
nomial are uniquely determined by continuity conditions up to
and including the second order derivative together with known
boundary conditions. Within each subrectangular area of the mesh

its equation is given by

- X ¢4 k ) o
£ l”(w.w) / a:;’ (p‘u ) (I,U-l;'r ) # .J‘l)
k=0g8=0 J
The coefficients {a:jj‘} are the result of a matrix product
(Meissl, 1971, p.36)
A= a1y = W (g)F H(h)
with
1 0 - 3/n° 2/h” |
H(h) = 0 1 - 2/h 1/h ' (9-2a)
0 0 3/h” - 20 |
0 0 - 1/h 1/h”
h ... grid distance in p-direction,
g ... grid distance in y-direction,
and |
fl] ql] L,3%1 qi,)‘]
F oo pij ri) pi'j‘l rl:i'] (9-2b)
141, L4+ 1 ;3 f+1,3+1 i+l,J+1
piol,j i+1,3 )jol,]ol L41, 31
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fij function values at the gridpoint with the indices (ij)
Pij - first derivative with respect to p at (ij)

9 5 first derivative with respect to ¢ at (ij)

riy second derivative with respect to py at (ij)

The first and second derivatives at the mesh points are deter-
mined by continuity conditions similar to the one-dimensional
case. For a unique representation, however, these values must

be known at the boundary points and are, therefore, calied boun-
dary values. Usually these boundary values are not known and,
consequently, some assumptions concerning their values have to
be made. In our case, however, we are in the lucky position that
we know all these boundary values exactly (they are just deriva-
tives of the covariance function) and, therefore, the spline
representation of the spatial covariance function is unique.

9.2 Approximated covariance expressions

The spatial covariance function of the disturbing
potential

K(P,Q) = § K (

will now be approximated by a bicubic spline function (9-1).
As independent variables we will choose

and ¢ = arccos

__ )
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Fig:. 9.1 Possible bicubic spline gridding

Since the bicubic spline is twice continuously differentiable
with respect to each independent variable p and ¢ , its third
derivative with respect to one variable is a step function.
Consequently, at most 3 differentiations with respect to each
variable p and ¢ are admitted. With this in mind we summarize
in table 1 all geodetically relevant covariance expressions

which can be derived from an approximation of the disturbing
potential covariance function by a bicubic spline function.
(Recall that a radial derivative corresponds to a differentiation
with respect to p , a horizontal derivative to a differentiation
with respect to ¢ .) All covariances denoted by @ can be de-
rived from the spline representation of the disturbing potential
covariance function. A bilinear representation, for example,
would only permit exprcssions denoted by o , a step function
representation only <cov(T,T) . Hatched areas indicate covariar
which cannot directly be derived from the basic spline represen-
tation. It is, however possible, also to fill up these gaps by
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choosing additional spline representations which interpolate the
radial and horizontal derivative.

Until now we have only stated that the different co-
variance expressions listed in table 1 can be derived by simple
differentiations of the spline; we suppressed the fact that be-
sides these differentiations there are also partial derivatives
of p with respect to r, and o and partial derivatives of
y with respect to 8 » BQ s A and Ao involved. In the sequel
we will give a setting-up of some frequently used covariances.
Details concerning the derivations can be found in (Tscherning,
1976), the relevant relations between different. quantities of the

gravity field can be found in (Heiskanen and Moritz, 1967).

P’ Q
cov(T ,ag ) = f & - ¢2
R o Ty F
1
cov({T €. .) = ~== f y
P
Q ”‘Q v g
COV(T n ) = - ___]'_,___ U
P’ 0 yrQs1n0 i AQ
1 2
A 4 f 0] 5 3f i 4f 9-4
cov(Ag,,ag,) '”p'"Q( i o ) (9-4)
WOQ
= —— = Z'F
cov(agp.ty) errQ(fWo o)
. "WAQ
= — f ¢} = Zf
COV(Agl,s']Q) YrPrQS]nOQ( WQ‘ W)
1
o 2P 5| e ¥
cov(e, ,Q) . (fwwapwUQ w¢UPGQ)
=
-1
COVIE T B — f v, ¥ + f
( P ]Q) er r S]n;) ( '\b'o/l()p \Q o ()p/]Q)
P Q Q




COV(”P’qQ) ; ¢ r sine_sing A ! ity
e e P Q

The partial derivatives of the spherical distance with
respect to the spherical coordinates of P and Q «can easily
be derived from

ER ik 3COSY

lP(-) - () f siny o(-)

with cosy = cosepcosoQ + sinopsine cos (A

0 o = *p)

A1l derivatives of this kind can be found in (Tscherning, 1976,
pp.18,19). Also very simple is the calculation of partial deriva-
tives of the spline with respect to p and y . Recalling its
defining equation (9- 1), we obtain by primitive differentiation

the partial derivatives occuring in the covariance expressions

above:
.43 (o p) = ; k f it (o0 )X T (w-u ) *
Ko 1 ) k2 i J
(37 (o 40 & § Kike1) § 2l o0y y-2gy g )"
pp k=2 L R ; :
3
£, (ouw) = ] 1 223 (p=0 )k(w'wa)z-l il
k=0£4=1
(90 (5 4) = 3§ ola-1)88597 (gop Yo (gey 128
op RO heD x5 - ?
f(lj)(waw) % f k i palid) (- )k_l(;'w<)2—l
ve ket Ray. B * '
In this way all derivatives up to f = 36a,, can be

calculated

g . G P S < T
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9.2 How to get covariances

At the very beginning of this report we have mentioned

that the covariance functicn approximations can be useful

for

large scale applications of collocation. Small scale problems are

of no conceyn; it would be a waste of time to perform the inter-

mediate step of the approximation. Also we want to avoid the

impression that this report is an attack on the excellent and

extremely useful subroutine COVAX written by C.C. Tscherning.

This sophisticated subroutine, however, should only be used as

a mean for obtaining an accurate network of absolute covariances.

Inside the network we can perform, so to say, relative calcu-

lations called interpolations based on a much simpler function

compared to the covariance function. (No geodesist will

use a

first order theodolite for purposes of property dividing!)

this sense covariance function approximations have to be under-

stood.

We will now write down in a compact form all

steps

In

necessary for A) setting up the spline representation and B)

calculating different kinds of covariances.

A) 1. Select an appropriate grid spacing in p- and y-direction

(g and h ) according to some kind of approximation error

estimates.

2. Define the lower and upper bounds in p and y
interested in and generate a rectangular mesh (i
a1 (P URENSE SR 6 1

3. Calculate the covariances of the disturbing potential

all mesh points using the subroutine COVAX.

you are
e

s

at

4. Calculate the boundary values necessary for the spline

representation:

;— = q,, = 0 because of the symmetry of
Y=0" respect to ¢ = 0

K

with

I




IK | .
Ll in general
U | p=¢ 9% 3 # 0 g
1
| i1} ‘p‘[
) K :
— P, # 0 in general
f ;‘ "‘1 ]
| 1) WJ
K| : sneral
T Tiasy DI] # 0 1in genera
f pl
| =1
)
Y R |
e | P = )
IpadY | 6} “l 11
| =0
“K |
— r
) p dy f % 0
I
| v=0
K| _
— | r # 0 1in general
ap Iy 0= 1J
‘ 1
| "1 "‘]
"} N l .
- K r # 0 1in general.
Yp oY N = [J
I
| ¥=y

5. With the covariances at the mesh points and the boundary
values defined above calculate by some spline algorithm
all other first and second mixed derivatives; calculate the
e B 0
R
these coefficients on a permanent file.

spline coefficients f{a for all subrectangles. Store

From now on the calculation of covariances is extremely

simple:

B) I, talculate »p and ¢ and find the corresponding subrec-
tangle 1JF such that <P %P ’ p < ¥ .
Ry (13) s . Tl - 20 R A, il
2. Define the kind of covariances you are interested in and
calculate it according to formulas of the kind of (9-4)

and (9-5).
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What are the advantages of the spline representation compared
to the bilinear or step function representation?

O The spline is a very accurate interpolating element; there-
fore, the number of grid points can be kept small and we
save a lot of mass-storage.

O The spline representation admits a great number of different
kinds of covariances derived from the basic spline; again
we save mass-storage.

However, there are also some disadvantages:

O The calculation of the spline coefficients is more laborious
than for the other elements.

O The calculation of a covariance needs more calculations and
therefore more CPU-time. These calculations, however, consist
of very simple operations only so that the routine is still
extremely fast compared to exact covariance calculations.

The following table 2 gives a comparison of CPU-time needed for
the calculation of some kinds of covariances using the subroutine
COVAX on the one hand and the spline representation on the other

hand

3 i Ag ¢ n
T 24.0 29 .3 38.7 38.6 COVAX
(0.4) (0.9) (0.6) (0.6) Spline
Ag 26.3 39.3 39.9

Table 2: CPU-time used for 1000 calculations of co-
variances using COVAX and a spline representation;

computer: UNIVAC 494,




10. Conclusions

Recently, many new sources of geodetic data are be-
coming available, all of them being related somehow to the gravity
field of the earth. The least-squares collocation method is the
mathematical tool for handling all these heterogeneous data 1n a
consistent way. The more sophisticated the kind of measurement
is, the more expensive is its processing. A typical example is the
use of satellite-to-satellite tracking data where the covariances
are obtained by multiple integration procedures with, again, co-
variances as input. Since the exact calculation of covariances 1is
fairly time consuming and a large number of tracking data is to
be expected, such an application for geodetic purposes would be
extremely expensive. This fact made the question arise whether
it is possible to avoid frequent calls of the highly sophisti-
cated subroutine COVAX by using other simple functions approxi-
mating the covariance function.

The basic principle underlying these investigations is
well known and frequently applied in many fields; the network
principle: generate a net of fixed points (here grid points) and
perform very accurate measurements at these points (here, calcu-
late exact covariances); these fixed points serve as a basis
for small scale measurements which can be performed using simpler
apparatus (here, more or less interpolation of covariances by
means of finite elements). This report was primarily devoted to
the study of interpolation errors, perturbation of spectra and
to the consequences of the approximation for the predicted signal
and its mean square error. Because of its smoothness and its most
favourable approximation properties the spline function re-
presentation of the covariance function presents itself as a

very useful tool for this kind of application.
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